# **System Wide Information Management**

**Program Overview and Security** 

Presented to: NATO/EUROCONTROL Air Traffic Management Security Coordination Group (NEASCOG)

**SWIM Security Workshop** 

Presented by: Jim Robb

Date: 25 June 2010



### **Agenda**

- Program Overview
- Segment 1 Security
- Segment 2 Security



### **Program Concept**

SWIM is an IT infrastructure program that will operate in the background to provide data to authorized users

#### **SWIM** will:

- Implement a Service-Oriented Architecture (SOA) in the National Airspace System (NAS)
- Allow the FAA to create new system interfaces more quickly and more cheaply than is possible today
- Facilitate the increased data-sharing that is required for NextGen

#### SWIM is not:

- A set of avionics equipment
- A substitute for NAS modernization programs
- A telecom program





### **Conceptual Overview**



Presented to: NATO/EUROCONTROL Air Traffic Management Security Coordination Group (NEASCOG) SWIM Security Workshop



### **Agenda**

- Program Overview
- Segment 1 Security
  - Architecture/Environment
  - SWIM Web Services Security Specification
- Segment 2 Security



#### **Segment 1 Overview (Programs/Facilities) National** Aeronautical Weather Information Service Management AIM SUA Airline **NWS** Special Operations Use Centers Airspace En Route **ATCSCC ARTCC 1 AOCs** Automation **ERAM** Modernization Air **NESG** Route NAS Traffic Çontrol Contro Senter Service Corridor System Gateway National Integrated Control CIWS William Network Weather Center **NNCC WJHTC** System Control **ERAM** Weather Hughes Center Message **TDDS** Technical WMSCR Switching FAA Telecommunication Infrastructure Center Center Terminal Replacement Radar Traffic Flow Management poroach Production Control Center National **TRACON 1 ⊘**ontrol Transportation <u>T∕ow</u>er Centek Traffic System' Flow **TPC TDDS** Management ATCT 1 Modernization **VNTSC** TFM-M Terminal Integrated Data **TDDS Terminal ITWS** Distribution Weather Service System

Presented to: NATO/EUROCONTROL Air Traffic Management Security Coordination Group (NEASCOG) SWIM Security Workshop



### **SWIM Segment 1 Architecture – Security View**



**MITRE** 



### **SWIM Web Services (WS) Security Specification**

- SWIM policies require alignment with industry guidance for Web service security architecture and interoperability
  - WS-I\* Basic Security Profile
  - NIST\*\* Guide to Secure Web Services
- The industry guidance does not define any specific security architecture but describes a wide range of possible solutions
- The range of possible solutions is too broad to enable the ease of integration and service composition goals that are central to SWIM
  - Proliferation of security controls could result in a web of point-to-point integrations
  - Differences in adopted security controls could undermine agility of SWIM SOA

\*Web Services Interoperability Organization \*\*National Institute of Standards and Technology\_



### **SWIM WS Security Specification Overview**

- Identifies the allowable security controls for Web Services in the SWIM environment
- Maps security controls to integration scenarios
- Defines specific requirements for security controls in token "profiles"
  - Transport Layer Security (TLS) Profile
  - WS-Security Username Token Profile
  - WS-Security Binary Security Token Profile
  - Security Assertion Markup Language (SAML) Token Profile
- Provides specific and verifiable requirements for each security control
  - SOAP message security header content
  - Processing Rules

- Allowable digest and encryption algorithms
- The specification addresses only scenarios that involve messagelevel security for Simple Object Access Protocol (SOAP) messages
  - No consideration for Representational State Transfer (REST)
    - content-based Java Messaging System (JMS) destination security



### **Agenda**

- Program Overview
- Segment 1 Security
- Segment 2 Security
  - Planning & Architecture
  - Prototyping



# SWIM Segment 2 A CHANGING NAS ENVIRONMENT

### REQUIRES AN ADDITIONAL CYBER SECURITY PERSPECTIVE



**MITRE** 



### Simplified NextGen NAS Services SV-4b



Presented to: NATO/EUROCONTROL Air Traffic Management Security Coordination Group (NEASCOG) SWIM Security Workshop

Federal Aviation Administration

### **SWIM Segment 2 Core Architecture Security View**



#### **MITRE**

Presented to: NATO/EUROCONTROL Air Traffic Management Security Coordination Group (NEASCOG) SWIM Security Workshop



### **SWIM Web Service Security Activity Landscape**



Presented to: NATO/EUROCONTROL Air Traffic Management Security Coordination Group (NEASCOG) SWIM Security Workshop

Federal Aviation Administration

# Options for Authentication subject identification when the integration involves an intermediary web service

- TLS with mutual Authentication?
  - NO. The subject is tied to the certificate used to establish the TLS connection
  - Subject would be the intermediate service instead of the initiator
- WS-Security Binary Security Token?
  - NO. The subject is tied to certificate used to sign the SOAP message
  - Subject would be the intermediate service instead of the initiator
- WS-Security Username Token?
  - Possible, but not practical
  - Username Token identifies the subject and is independent of the SOAP message; however, the password can be *in-the-clear* within the token or the ID store
- SAML Assertion?

- YES! SAML Assertion provides subject information and is created independent of the SOAP message signature or transport
- SAML Assertion is cryptographically signed by the issuer and provides additional security controls that can tie the assertion to the request message from the intermediary



# **SWIM Evolves to Meet NextGen Cyber Security Risks**



Greater use of Internet Protocol (IP) and greater connectivity require an effective Enterprise Information System Security Architecture

**MITRE** 



### **SWIM Web Site**

## www.swim.gov

